Question:
$2(3-x) \geq \frac{x}{5}+4$
Solution:
$2(3-x) \geq \frac{x}{5}+4$
$\Rightarrow 6-2 x \geq \frac{x}{5}+4$
$\Rightarrow 6-4 \geq \frac{x}{5}+2 x \quad[$ Transposing $-2 x$ to the RHS and 4 to the LHS $]$
$\Rightarrow 2 \geq \frac{11 x}{5}$
$\Rightarrow \frac{11 x}{5} \leq 2$
$\Rightarrow x \leq \frac{10}{11} \quad\left[\right.$ Mltiplying both the sides by $\left.\frac{5}{11}\right]$
Thus, the solution set of the given inequation is $\left(-\infty, \frac{10}{11}\right]$.