If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P., prove that:
(i) $\frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c}$ are in A.P.
(ii) a (b +c), b (c + a), c (a +b) are in A.P.
Given: $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
$\therefore \frac{2}{b}=\frac{1}{a}+\frac{1}{c}$
$\Rightarrow 2 a c=a b+b c \quad \ldots(1)$
(i) To prove: $\frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c}$ are in A.P.
$2\left(\frac{a+c}{b}\right)=\frac{b+c}{a}+\frac{a+b}{c}$
$\Rightarrow 2 a c(a+c)=b c(b+c)+a b(a+b)$
$\mathrm{LHS}: 2 a c(a+c)$
$=(a b+b c)(a+c) \quad(\operatorname{From}(1))$
$=a^{2} b+2 a b c+b c^{2}$
RHS : $b c(b+c)+a b(a+b)$
$=b^{2} c+b c^{2}+a^{2} b+a b^{2}$
$=b^{2} c+a b^{2}+b c^{2}+a^{2} b$
$=b(b c+a b)+b c^{2}+a^{2} b$
$=2 a b c+b c^{2}+a^{2} b$
$=a^{2} b+2 a b c+b c^{2} \quad(\operatorname{From}(1))$
$\therefore \mathrm{LHS}=\mathrm{RHS}$
Hence proved.
(ii) To prove: $a(b+c), b(c+a), c(a+b)$ are in A.P.
$\Rightarrow 2 b(c+a)=a(b+c)+c(a+b)$
LHS : $2 b(c+a)$
$=2 b c+2 b a$
RHS : $a(b+c)+c(a+b)$
$=a b+a c+a c+b c$
$=a b+2 a c+b c$
$=a b+a b+b c+b c$ (From (1))
$=2 a b+2 b c$
$\therefore \mathrm{LHS}=\mathrm{RHS}$
Hence proved.