Prove that $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$, for all natural numbers $n>1$. [NCERT EXEMPLAR]
Let $\mathrm{p}(n): \frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$, for all natural numbers $n>1$.
Step I: For $n=2$,
$\mathrm{LHS}=\frac{1}{2+1}+\frac{1}{2 \times 2}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}=\frac{14}{24}>\frac{13}{24}=\mathrm{RHS}$
As, LHS $>$ RHS
So, it is true for $n=2$.
Step II : For $n=k$,
Let $\mathrm{p}(k): \frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}>\frac{13}{24}$, be true for some natural numbers $k>1$.
Step III : For $n=k+1$,
$\mathrm{p}(k+1)=\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}+\frac{1}{2 k+1}$
$>\frac{13}{24}+\frac{1}{2 k+1} \quad($ Using step II $)$
$>\frac{13}{24}$
i.e. $\mathrm{p}(k+1)>\frac{13}{24}$
So, it is also true for $n=k+1$.
Hence, $\mathrm{p}(n): \frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$, for all natural numbers $n>1$.