Solve the following :

Question:

A disc rotates about its axis with a constant angular acceleration of $4 \mathrm{rad} /{ }^{S^{2}}$. Find the radial and tangential accelerations of a particular at a distance of $1 \mathrm{~cm}$ from the axis end of the first second after the disc starts rotating.

Solution:

$\omega_{0}=0, \alpha=4 \mathrm{rad} /{ }^{s^{2}} ; \mathrm{t}=1 \mathrm{sec}$

$\omega={ }^{\omega} 0_{+} \alpha_{t}$

$\omega=4 \mathrm{rad} / \mathrm{sec}$

Radial acceleration $=\mathrm{R}^{\omega^{2}}$

$=(0.01)^{(4)^{2}}$

$=0.16^{\mathrm{m} / \mathrm{s}^{2}}$

$=16^{\mathrm{cm} / \mathrm{s}^{2}}$

Tangential acceleration

$a_{T}=r a$

$=(0.01)(4)$

$=0.04 \mathrm{~m} / \mathrm{s}^{2}$

$=4 \mathrm{~cm} / \mathrm{s}^{2}$

Leave a comment