If (1 – x + x2)n = a0 + a1 x + a2 x2 +...+a2n x2n, then a0 + a2 + a4 +...+ a2n equals
(a) $\frac{3^{n}+1}{2}$
(b) $\frac{3^{n}-1}{2}$
(c) $\frac{1-3^{n}}{2}$
(d) $3^{n}+\frac{1}{2}$
Given;
$\left(1-x+x^{2}\right) n=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n} \quad \ldots(1)$
In order to find $a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}$
i.e. all even terms are involved
∴ replace x by 1 in equation (1)
we get
$(1-1+1)^{n}=a_{0}+a_{1}+a_{2}+\ldots \ldots+a_{2 n}$
i.e. $1=a_{0}+a_{1}+a_{2}+\ldots+a_{2 n} \quad \ldots$ (2)
and now replace x by –1 in equation (1), we get
$(1+1+1)^{n}=a_{0}-a_{1}+a_{2}-a_{3}+\ldots+a_{2 n}$
i.e. $3^{n}=a_{0}-a_{1}+a_{2}-a_{3}+\ldots \ldots+a_{2 n} \quad \ldots(3)$
By adding (2) and (3), we get
$3^{n}+1=2 a_{0}+2 a_{2}+2 a_{4}+\ldots+2 a_{2 n}$
i.e. $a_{0}+a_{2}+a_{4}+\ldots+\mathrm{a}_{2 n}=\frac{1+3^{n}}{2}$
Hence, the correct answer is option A.