Solve the following

Question:

If 8Cr − 7C3 = 7C2, find r.

Solution:

Given:

 8Cr − 7C3 = 7C2

We have,

${ }^{8} C_{r}={ }^{7} C_{2}+{ }^{7} C_{3}$

$\Rightarrow{ }^{8} C_{r}={ }^{8} C_{3} \quad\left[\because{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r} ; r \leq n\right]$

$\Rightarrow r=3 \quad\left[\because{ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow x=y\right.$ or, $\left.n=x+y\right]$

And $r+3=8$

$\Rightarrow r=5$

 

Leave a comment