Solve the following

Question:

If |z + 2| = |z – 2|, then the locus of z is ____________.

Solution:

|z + 2| = |z – 2| for z = x + iy

i.e |iy + 2| = |x + iy – 2|

i.e |(+ 2) + iy| = |(– 2) + iy|

Square both sides,

|(x + 2)| + iy|2 = |(x – 2)| + iy|2

i.e (x + 2)2 + y2 = (x – 2)2 + y2

i.e $x^{2}+4+4 x+y^{2}=x^{2}+4-4 x+y^{2}$

i.e $f x=0$

i.e $x=0$

Hence, locus is perpendicular bisector of the segment joining (–2, 0) and (2, 0).

Leave a comment