If $S_{n}$ denotes the sum of first $n$ terms of an A.P. $
(a) $\frac{2 m+1}{2 n+1}$
(b) $\frac{2 m-1}{2 n-1}$
(c) $\frac{m-1}{n-1}$
(d) $\frac{m+1}{n+1}$
(d) $\frac{m+1}{n+1}$
$\frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}}$
$\Rightarrow \frac{\frac{m}{2}\{2 a+(m-1) d\}}{\frac{n}{2}\{2 a+(n-1) d\}}=\frac{m^{2}}{n^{2}}$
$\Rightarrow \frac{\{2 a+(m-1) d\}}{\{2 a+(n-1) d\}}=\frac{m}{n}$
$\Rightarrow 2 a n+n d m-n d=2 a m+n m d-m d$
$\Rightarrow 2 a n-2 a m-n d+m d=0$
$\Rightarrow 2 a(n-m)-d(n-m)=0$
$\Rightarrow 2 a(n-m)=d(n-m)$
$\Rightarrow d=2 a \quad \ldots .(1)$
Ratio of $\frac{a_{m}}{a_{n}}=\frac{a+(m-1) d}{a+(n-1) d}$
$\Rightarrow \frac{a_{m}}{a_{n}}=\frac{a+(m-) 2 a}{a+(n-) 2 a} \quad$ From $(1)$
$=\frac{a+2 a m-2 a}{a+2 a n-2 a}$
$=\frac{2 a m-a}{2 a n-a}$
$=\frac{2 m-1}{2 n-1}$