$\mathrm{NaClO}_{3}$ is used, even in spacecrafts, to produce $\mathrm{O}_{2}$. The daily consumption of pure $\mathrm{O}_{2}$ by a person is $492 \mathrm{~L}$ at $1 \mathrm{~atm}, 300 \mathrm{~K}$. How much amount of $\mathrm{NaClO}_{3}$, in grams, is required to produce $\mathrm{O}_{2}$ for the daily consumption of a person at $1 \mathrm{~atm}, 300 \mathrm{~K}$ ? _______________ .
$\mathrm{NaClO}_{3}(\mathrm{~s})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{NaCl}(\mathrm{s})+\mathrm{FeO}(\mathrm{s}) \mathrm{R}=0.082$
Latm $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$
(2130)
$\mathrm{NaClO}_{3}(s)+\mathrm{Fe}(s) \longrightarrow \mathrm{NaCl}(s)+\mathrm{FeO}(s)+\mathrm{O}_{2}(g)$
Moles of $\mathrm{NaClO}_{3}=$ Moles of $\mathrm{O}_{2}$
Moles of $\mathrm{O}_{2}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{1 \times 492}{0.082 \times 300}=20 \mathrm{~mol}$
Mass of $\mathrm{NaClO}_{3}=20 \times 106.5=2130 \mathrm{~g}$