11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
Let P(n) be the given statement.
Now,
$P(n): 11^{n+2}+12^{2 n+1}$ is divisible by $133 .$
Step 1:
$P(1)=11^{1+2}+12^{2+1}=1331+1728=3059$
It is divisible by 133 .
Step 2 :
Let $P(m)$ be divisible by 133 .
Now,
$11^{m+2}+12^{2 m+1}$ is divisible by 133 .
Suppose :
$11^{m+2}+12^{2 m+1}=133 \lambda \quad \ldots$ (1)
We shall show that $P(m+1)$ is true whenever $P(m)$ is true.
Now,
$P(m+1)=11^{m+3}+12^{2 m+3}$
$=11^{m+2} \cdot 11+12^{2 m+1} \cdot 12^{2}+11 \cdot 12^{2 m+1}-11 \cdot 12^{2 m+1}$
$=11\left(11^{m+2}+12^{2 m+1}\right)+12^{2 m+1}(144-11)$
$=11.133 \lambda+12^{2 m+1} .133 \quad[$ From $(1)]$
$=133\left(11 \lambda+12^{2 m+1}\right)$
It is divisible by 133 .
Thus, $P(m+1)$ is true.
By the principle of $m$ athematical $i$ nduction, $P(n)$ is true for all $\mathrm{n} \in N$.