Question:
A ball is thrown at a speed of $40 \mathrm{~m} / \mathrm{s}$ at an angle of $60^{\circ}$ with the horizontal.
Find
(a) The maximum height reached
(c) The range of the ball
Take $\mathrm{q}=10 \mathrm{~m} / \mathrm{s}^{2}$
Solution:
$\mathrm{u}=40 \mathrm{~m} / \mathrm{s} ; \theta=60^{\circ}$
(a)
$\max ^{=} \frac{\mathrm{u}^{2} \sin 2 \theta}{2 \mathrm{~g}}=\frac{40^{2}\left(\sin ^{2} 60\right)}{2 \mathrm{~g}}$
$\mathrm{H}_{\max }=60 \mathrm{~m}$
(b)
$\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{g}}=\frac{40^{2} \sin (2 \mathrm{x} 60)}{\mathrm{g}}$
$R=80 \sqrt{3} \mathrm{~m}$