Question:
Solve:
$\frac{3 t-2}{4}-\frac{2 t+3}{3}=\frac{2}{3}-t$
Solution:
$\frac{3 t-2}{4}-\frac{2 t+3}{3}=\frac{2}{3}-t$
$\Rightarrow \frac{3 t-2}{4}-\frac{2 t+3}{3}=\frac{2-3 t}{3} \quad(3$ is the L.C.M. of 1 and 3$)$
$\Rightarrow 12\left(\frac{3 t-2}{4}\right)-12\left(\frac{2 t+3}{3}\right)=12\left(\frac{2-3 t}{3}\right) \quad($ multiplying throughout by 12, which is the L. C.M. of 4,3 and 3$)$
$\Rightarrow 3(3 t-2)-4(2 t+3)=4(2-3 t)$
$\Rightarrow 9 t-6-8 t-12=8-12 t$
$\Rightarrow 9 t-8 t-6-12=8-12 t$
$\Rightarrow t-18=8-12 t$
$\Rightarrow t+12 t=18+8$
$\Rightarrow 13 t=26$
$\Rightarrow t=\frac{26}{13}=2$
$\therefore \mathrm{t}=2$