Solve the following

Question:

If the equilibrium constant for $\mathrm{A} \rightleftharpoons \mathrm{B}+\mathrm{C}$ is $\mathrm{K}_{\mathrm{eq}}^{(1)}$ and that of $\mathrm{B}+\mathrm{C} \rightleftharpoons \mathrm{P}$ is $\mathrm{K}_{\mathrm{eq}}^{(2)}$, the equilibrium constant for $\mathrm{A} \rightleftharpoons \mathrm{P}$ is :

  1. $\mathrm{K}_{\mathrm{eq}}^{(1)} / \mathrm{K}_{\mathrm{eq}}^{(2)}$

  2. $\mathrm{K}_{\mathrm{eq}}^{(2)}-\mathrm{K}_{\mathrm{eq}}^{(1)}$

  3. $\mathrm{K}_{\mathrm{eq}}^{(1)}+\mathrm{K}_{\mathrm{eq}}^{(2)}$

  4. $\mathrm{K}_{\mathrm{eq}}^{(1)} \mathrm{K}_{\mathrm{eq}}^{(2)}$


Correct Option:

Solution:

On adding equations (i) and (ii), we get

$\mathrm{A} \rightleftharpoons \mathrm{P}$

$K_{\mathrm{eq}}($ overall $)=K_{\mathrm{eq}}^{(1)} \cdot K_{\mathrm{eq}}^{(2)}$

Leave a comment