Solve the following

Question:

$\frac{x-1}{x+3}>2$

Solution:

We have, $\frac{x-1}{x+3}>2$

$\Rightarrow \frac{x-1}{x+3}-2>0$

$\Rightarrow \frac{x-1-2(x+3)}{x+3}>0$

$\Rightarrow \frac{x-1-2 x-6}{x+3}>0$

$\Rightarrow \frac{-x-7}{x+3}>0$

$\Rightarrow \frac{x+7}{x+3}<0$

$\therefore x \in(-7,-3)$

Leave a comment