Solve the following

Question:

If $x+i y=\sqrt{\frac{a+i b}{c+i d}}$, then write the value of $\left(x^{2}+y^{2}\right)^{2}$

Solution:

$x+i y=\sqrt{\frac{a+i b}{c+i d}}$

Taking modulus on both the sides,

$|x+i y|=\left|\sqrt{\frac{a+i b}{c+i d}}\right|$

$\Rightarrow|x+i y|=\sqrt{\frac{|a+i b|}{|c+i d|}}$

$\Rightarrow \sqrt{x^{2}+y^{2}}=\sqrt{\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}}}$   $\left[\because|x+i y|=\sqrt{x^{2}+y^{2}}\right]$

Squaring both the sides,

$x^{2}+y^{2}=\sqrt{\frac{a^{2}+b^{2}}{c^{2}+d^{2}}}$

Squaring again, we get,

$\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$

Leave a comment