If $\left|z_{1}\right|=\left|z_{2}\right|$ and $\arg \left(\frac{z_{1}}{z_{2}}\right)=\pi$, then $z_{1}+z_{2}=$ ______________________
Let |z1| = |z2| = r
Let arg z1 = θ1 and arg z2 = θ2
$\Rightarrow z_{1}=r e^{i \theta_{1}}$ and $z_{2}=r e^{i \theta_{2}}$
Since $\arg \left(\frac{z_{1}}{z_{2}}\right)=\pi$
i. e $\arg z_{1}-\arg z_{2}=\pi$
i. $e \theta_{1}-\theta_{2}=\pi$
i. e $\theta_{1}=\theta_{2}+\pi$
$e^{i \theta_{1}}=e^{i\left(\theta_{2}+\pi\right)}$
$=e^{i \pi} e^{i \theta_{2}}$
$=(\cos \pi+i \sin \pi)\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$=-1\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$e^{i \theta_{1}}=-e^{i \theta_{2}}$
$\Rightarrow z_{1}+z_{2}=r e^{i \theta_{1}}+r e^{i \theta_{2}}$
Hence, $z_{1}+z_{2}=r\left(e^{i \theta_{1}}+e^{i \theta_{2}}\right)=0$