$\frac{(2 n) !}{2^{2 n}(n !)^{2}} \leq \frac{1}{\sqrt{3 n+1}}$ for all $n \in N$
Let P(n) be the given statement.
Thus, we have:
$P(n): \frac{(2 n) !}{2^{2 n}(n !)^{2}} \leq \frac{1}{\sqrt{3 n+1}}$
Step 1:
$P(1): \frac{2 !}{2^{2} .1}=\frac{1}{2} \leq \frac{1}{\sqrt{3+1}}$
Thus, $P(1)$ is true.
Step 2 :
Let $P(m)$ be true.
Thus, we have :
$\frac{(2 m) !}{2^{2 m}(m !)^{2}} \leq \frac{1}{\sqrt{3 m+1}}$
We need to prove that $P(m+1)$ is true.
Now,
$P(m+1):$
$\frac{(2 m+2) !}{2^{2 m+2}((m+1) !)^{2}}=\frac{(2 m+2)(2 m+1)(2 m) !}{2^{2 m} \cdot 2^{2}(m+1)^{2}(m !)^{2}}$
$\Rightarrow \frac{(2 m+2) !}{2^{2 m+2}((m+1) !)^{2}} \leq \frac{(2 m) !}{2^{2 m}(m !)^{2}} \times \frac{(2 m+2)(2 m+1)}{2^{2}(m+1)^{2}}$
$\Rightarrow \frac{(2 m+2) !}{2^{2 m+2}((m+1) !)^{2}} \leq \frac{2 m+1}{2(m+1) \sqrt{3 m+1}}$
$\Rightarrow \frac{(2 m+2) !}{2^{2 m+2}((m+1) !)^{2}} \leq \sqrt{\frac{(2 m+1)^{2}}{4(m+1)^{2}(3 m+1)}}$
$\Rightarrow \frac{(2 m+2) !}{2^{2 m+2}((m+1) !)^{2}} \leq \sqrt{\frac{\left(4 m^{2}+4 m+1\right) \times(3 m+4)}{4\left(3 m^{3}+7 m^{2}+5 m+1\right)(3 m+4)}}$
$\Rightarrow \frac{(2 m+2) !}{2^{2 m+2}((m+1) !)^{2}} \leq \sqrt{\frac{12 m^{3}+28 m^{2}+19 m+4}{\left(12 m^{3}+28 m^{2}+20 m+4\right)(3 m+4)}}$
$\because \frac{12 m^{3}+28 m^{2}+19 m+4}{\left(12 m^{3}+28 m^{2}+20 m+4\right)}<1$
$\therefore \frac{(2 m+2) !}{2^{2 m+2}((m+1) !)^{2}}<\frac{1}{\sqrt{3 m+4}}$
Thus, $P(m+1)$ is true.
Hence, by mathematical induction $\frac{(2 n) !}{2^{2 n}(n !)^{2}} \leq \frac{1}{\sqrt{3 n+1}}$ is true for all $n \in N$