solve the following

Question:

$\lim _{x \rightarrow 0} \frac{x\left(e^{\left(\sqrt{1+x^{2}+x^{4}}-1\right) / x}-1\right)}{\sqrt{1+x^{2}+x^{4}}-1}$

  1. does not exist.

  2. is equal to $\sqrt{\mathrm{e}}$.

  3. is equal to 0 .

  4. is equal to 1 .


Correct Option: , 4

Solution:

$\lim _{x \rightarrow 0} \frac{x\left(e^{\left(\sqrt{1+x^{2}+x^{4}}-1\right) / x}-1\right)}{\sqrt{1+x^{2}+x^{4}}-1}$

$\because \lim _{x \rightarrow 0} \frac{\sqrt{1+x^{2}+x^{4}}-1}{x}\left(\frac{0}{0}\right.$ from)

$\lim _{x \rightarrow 0} \frac{\left(1+x^{2}+x^{4}\right)-1}{x\left(\sqrt{1+x^{2}+x^{4}}+1\right.}$

$\lim _{x \rightarrow 0} \frac{x\left(1+x^{2}\right)}{\left(\sqrt{1+x^{2}+x^{4}}+1\right)}=0$

So $\lim _{x \rightarrow 0} \frac{x\left(e^{\left(\frac{\sqrt{1+x^{2}+x^{4}}-1}{x}\right)}-1\right)}{\sqrt{1+x^{2}+x^{4}}-1}\left(\frac{0}{0}\right.$ from $)$

$\lim _{x \rightarrow 0} \frac{e^{\frac{\sqrt{1+x^{2}+x^{4}}-1}{x}}-1}{\left(\frac{\sqrt{1+x^{2}+x^{4}}-1}{x}\right)}=1$

Leave a comment