Solve the following

Question:

If the sequence < an > is an A.P., show that

am +n +am − n = 2am.

Solution:

Let the sequence < an >  be an A.P. with the first term being A and the common difference being D.

To prove: am +n +am − n = 2am

LHS: am +n +am − n

$=A+(m+n-1) D+A+(m-n-1) D \quad\left\{\because a_{n}=a+(n-1) d\right\}$

$=A+m D+n D-D+A+m D-n D-D$

$=2 A+2 m D-2 D \quad \ldots(\mathrm{i})$

RHS: 2am

$=2[A+(m-1) D]$

$=2 A+2 m D-2 D \quad \ldots(\mathrm{ii})$

From (i) and (ii), we get:

LHS = RHS

Hence, proved.

Leave a comment