Solve the following

Question:

$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ absorbs light of wavelength $498 \mathrm{~nm}$ during a $\mathrm{d}-\mathrm{d}$ transition. The octahedral splitting energy for the above complex is $\times 10^{-19} \mathrm{~J}$. (Round off to the Nearest Integer). $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} ; \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$

Solution:

(4)

$\lambda_{\text {absonbed }}=498 \mathrm{~nm}$ (given)

The octahedral spilitting energy

$\Delta_{0}$ or $\mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{498 \times 10^{-9}}$

$=0.0399 \times 10^{-17} \mathrm{~J}$

$=3.99 \times 10^{-19} \mathrm{~J}$

$=4.00 \times 10^{-19} \mathrm{~J}$ (round off)

Leave a comment