Question:
If 52x + 1 ÷ 25 = 125, find the value of x.
Solution:
Given:
$5^{2 x+1} \div 25=125$
We have:
$25=5 \times 5=5^{2}$
$125=5 \times 5 \times 5=5^{3}$
$\therefore \frac{5^{2 x+1}}{5^{2}}=5^{3} \Rightarrow 5^{[(2 x+1)-2]}=5^{3}$
$\therefore \frac{5^{2 x+1}}{5^{2}}=5^{3} \Rightarrow 5^{[(2 x+1)-2]}=5^{3}$
or $5^{[(2 x+1)-2]}=5^{[2 x-1]}=5^{3}$
$\Rightarrow 2 x-1=3$
$2 x=3+1=4$
$x=\frac{4}{2}=2$
$\therefore x=2$