Question:
(ab)n = anbn for all n ∈ N.
Solution:
Let P(n) be the given statement.
Now,
$P(n):(a b)^{n}=a^{n} b^{n}$ for all $n \in N$.
Step 1:
$P(1):(a b)^{1}=a^{1} b^{1}=a b$
Thus, $P(1)$ is true.
Step 2 :
Let $P(m)$ be true.
Then,
$(a b)^{m}=a^{m} b^{m}$
We need to show that $P(m+1)$ is true whenever $P(m)$ is true.
Now,
$P(m+1):(a b)^{m+1}=(a b)^{m} \cdot a b$
$=a^{m} b^{m} \cdot a b$
$=a^{m} a \cdot b^{m} b$
$=a^{m+1} b^{m+1}$
Hence, $P(m+1)$ is true.
By the $p$ rinciple of mathematical $i$ nduction, $P(n)$ is true for all $n \in N$.