Solve the following

Question:

If $z=-1+\sqrt{-} \overline{3}$, then $\arg (z)=$

Solution:

$z=-1+i \sqrt{-} \overline{3}$

$x=-1$ and $y=\sqrt{3}$

$\theta=\tan ^{-1} \frac{\sqrt{3}}{-1}$

$=\tan ^{-1}|-\sqrt{3}|$

$\theta=\frac{\pi}{3}$

Since z lies in IV quadrant.

$\Rightarrow$ argument of $z$ is $\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$.

Leave a comment