Solve the following

Question:

Let $\alpha, \beta$ be real and $z$ be a complex number. If $z^{2}+\alpha z+\beta=0$ has two distinct roots on the line $\operatorname{Re} z=1$, then it is necessary that :-

  1. $|\beta|=1$

  2. $\beta \in(1, \infty)$

  3. $\beta \in(0,1)$

  4. $\beta \in(-1,0)$


Correct Option: , 2

Solution:

Leave a comment