solve the following

Question:

If $S=\frac{7}{5}+\frac{9}{5^{2}}+\frac{13}{5^{3}}+\frac{19}{5^{4}}+\ldots .$, then $160 \mathrm{~S}$ is equal to________.

Solution:

$\mathrm{S}=\frac{7}{5}+\frac{9}{5^{2}}+\frac{13}{5^{3}}+\frac{19}{5^{4}}+\ldots$

$\frac{1}{5} \mathrm{~S}=\frac{7}{5^{2}}+\frac{9}{5^{3}}+\frac{13}{5^{4}}+\ldots$

On subtracting

$\frac{4}{5} \mathrm{~S}=\frac{7}{5}+\frac{2}{5^{2}}+\frac{4}{5^{3}}+\frac{6}{5^{4}}+\ldots$

$\mathrm{S}=\frac{7}{4}+\frac{1}{10}\left(1+\frac{2}{5}+\frac{3}{5^{2}}+\ldots\right)$

$\mathrm{S}=\frac{7}{4}+\frac{1}{10}\left(1-\frac{1}{5}\right)^{-2}$

$=\frac{7}{4}+\frac{1}{10} \times \frac{25}{16}=\frac{61}{32}$

$\Rightarrow 160 S=5 \times 61=305$

Leave a comment