Question:
$\frac{2 x+3}{4}-3<\frac{x-4}{3}-2$
Solution:
$\frac{2 x+3}{4}-3<\frac{x-4}{3}-2$
$\Rightarrow \frac{2 x+3}{4}-\frac{x-4}{3}<-2+3 \quad$ (Transposing $\frac{x-4}{3}$ to the LHS and $-3$ to the RHS)
$\Rightarrow \frac{3(2 \mathrm{x}+3)-4(\mathrm{x}-4)}{12}<1$
$\Rightarrow 3(2 x+3)-4(x-4)<12 \quad$ (Multiplying both the sides by 12$)$
$\Rightarrow 6 x+9-4 x+16<12$
$\Rightarrow 2 x+25<12$
$\Rightarrow 2 x<12-25$
$\Rightarrow 2 x<-13$
$\Rightarrow x<-\frac{13}{2} \quad$ (Dividing both the sides by 2 )
Hence, the solution of the given inequation is $\left(-\infty,-\frac{13}{2}\right)$.