Solve the equation

Question:

If $\mathrm{a} \in \mathrm{R}$ and the equation $-3(\mathrm{x}-[\mathrm{x}])^{2}+2(\mathrm{x}-[\mathrm{x}])+\mathrm{a}^{2}=0$ (where $[\mathrm{x}]$ deontes the greatest integer $\leq x)$ has no integral solution, then all possible values of a lie in the interval:

  1. $(-1,0) \cup(0,1)$

  2. $(1,2)$

  3. $(-2,-1)$

  4. $(-\infty,-2) \cup(2, \infty)$


Correct Option:

Solution:

Leave a comment