Question:
$\lim _{x \rightarrow 0} \frac{x\left(e^{\left(\sqrt{1+x^{2}+x^{4}}-1\right) / x}-1\right)}{\sqrt{1+x^{2}+x^{4}}-1}$
Correct Option: , 2
Solution:
Let $L=\lim _{x \rightarrow 0} \frac{x\left(e^{\frac{\sqrt{1+x^{2}+x^{4}}-1}{x}}-1\right)}{\sqrt{1+x^{2}+x^{4}}-1}$
$=\lim _{x \rightarrow 0} \frac{e^{\frac{\sqrt{1+x^{2}+x^{4}}-1}{x}}-1}{\frac{\sqrt{1+x^{2}+x^{4}}-1}{x}}$
Put $\frac{\sqrt{1+x^{2}+x^{4}}-1}{x}=t$ when $x \rightarrow 0 \Rightarrow t \rightarrow 0$
$\therefore L=\lim _{t \rightarrow 0} \frac{e^{t}-1}{t}=1$