Solve graphically the system of linear equations:
$4 x-3 y+4=0$
$4 x+3 y-20=0$
Find the area bounded by these lines and x-axis.
The given equations are
$4 x-3 y+4=0$$. .(i)$
$4 x+3 y-20=0$$. .(i i)$
Putting $x=0$ in equation $(i)$, we get:
$\Rightarrow 4 \times 0-3 y=-4$
$\Rightarrow y=4 / 3$
$x=0, \quad y=4 / 3$
Putting $y=0$ in equation $(i,$, we get:
$\Rightarrow 4 x-3 \times 0=-4$
$\Rightarrow x=-1$
$x=-1, \quad y=0$
Use the following table to draw the graph.
The graph of (i) can be obtained by plotting the points $(0,4 / 3),(-1,0)$.
$4 x+3 y=20$ ..(ii)
Putting $x=0$ in equation $(i i)$ we get:
$\Rightarrow 4 x+3 \times 0=20$
$\Rightarrow x=5$
$x=5, \quad y=0$
Use the following table to draw the graph.
Draw the graph by plotting the two points from table.
The two lines intersect at $P(2,4)$.
Hence $x=2, \quad y=4$ is the solution of the given equations.
Now,
$\Rightarrow$ Required area $=$ Area of PBD
$\Rightarrow$ Required area $=1 / 2($ base $\times$ height $)$
$\Rightarrow$ Required area $=1 / 2(B D \times P M)$
$\Rightarrow$ Required area $=1 / 2(6 \times 4)$
Hence, the area $=12$ sq.units