Question:
Solve for x, the inequalities in
$\frac{1}{|x|-3} \leq \frac{1}{2}$
Solution:
According to the question,
$\frac{1}{|x|-3} \leq \frac{1}{2}$
$\Rightarrow \frac{1}{|x|-3}-\frac{1}{2} \leq 0$
$\Rightarrow \frac{2-|x|+3}{2(|x|-3)} \leq 0$
$\Rightarrow \frac{5-|x|}{(|x|-3)} \leq 0$
⇒ 5 – |x| ≤ 0 and |x| – 3 > 0 or 5 – |x| ≥ 0 and |x| – 3 < 0
⇒ |x| ≥ 5 and |x| > 3 or |x| ≤ 5 and |x| < 3
⇒ |x| ≥ 5 or |x| < 3
⇒ x ∈ (- ∞ , – 5] or [5, ∞) or x ∈ ( -3 , 3)
⇒ x ∈ (- ∞ , – 5] ∪ ( -3 , 3) ∪ [5, ∞)