Question:
Solve for x, the inequalities in
$\frac{|x-2|-1}{|x-2|-2} \leq 0$
Solution:
According to the question,
$\frac{|x-1|-1}{|x-2|-2} \leq 0$
Let $y=|x-2|$, then
$\Rightarrow \frac{y-1}{y-2} \leq 0$
Now, if $y<1$, then
$\mathrm{y}-1<0$ and $\mathrm{y}-2<0$
and, $\frac{y-1}{y-2}>0$ ,which is not required
if $y>2$, then
$y-1>0$ and $y-2>0$
and, $\frac{y-1}{y-2}>0$ , which is not required
if $1 \leq \mathrm{y}<2$, then
$\mathrm{y}-1 \geq 0$ and $\mathrm{y}-2<0$
and,
$\frac{y-1}{y-2}<0$ , which is the required answer,
Hence,
1 ≤ y < 2
⇒ 1 ≤ |x – 2| < 2
Here, there are two cases
⇒ 1 ≤ x – 2 < 2
⇒ 3 ≤ x < 4
And
⇒ 1 ≤ -(x – 2) < 2
⇒ 1 ≤ – x + 2 < 2
Multiplying each term by -1,
⇒ -2 ≤ x – 2 < -1
Adding 2 to each term,
⇒ 0 ≤ x < 1
∴ Hence, solution is [0, 1) ∪ [3, 4)