Solve each of the following systems of equations by the method of cross-multiplication :
$m x-n y=m^{2}+n^{2}$
$x+y=2 m$
GIVEN:
$m x-n y=m^{2}+n^{2}$
$x+y=2 m$
To find: The solution of the systems of equation by the method of cross-multiplication:
Here we have the pair of simultaneous equation
$m x-n y-\left(m^{2}+n^{2}\right)=0$
$x+y-2 m=0$
By cross multiplication method we get
$\frac{x}{(-2 m)(-n)-\left(-\left(m^{2}+n^{2}\right)\right)}=\frac{-y}{(-2 m)(m)-\left(-\left(m^{2}+n^{2}\right)\right)}=\frac{1}{m+n}$
$\frac{x}{(m+n)^{2}}=\frac{-y}{\left(-2 m^{2}\right)+\left(m^{2}+n^{2}\right)}=\frac{1}{m+n}$
$\frac{x}{(m+n)^{2}}=\frac{1}{m+n}$
$x=m+n$
Now for y
$\frac{-y}{\left(-2 m^{2}\right)+\left(m^{2}+n^{2}\right)}=\frac{1}{m+n}$
$\frac{y}{\left(m^{2}-n^{2}\right)}=\frac{1}{m+n}$
$\frac{y}{(m-n)(m+n)}=\frac{1}{m+n}$
$y=m-n$
Hence we get the value of $x=m+n$ and $y=m-n$