Solve each of the following systems of equations by the method of cross-multiplication :
$\frac{a^{2}}{x}-\frac{b^{2}}{y}=0$
$\frac{a^{2} b}{x}+\frac{b^{2} a}{y}=a+b, x, y \neq 0$
GIVEN:
$\frac{a^{2}}{x}-\frac{b^{2}}{y}=0$
$\frac{a^{2} b}{x}+\frac{a b^{2}}{y}=a+b$
To find: The solution of the systems of equation by the method of cross-multiplication:
Here we have the pair of simultaneous equation
$\frac{a^{2}}{x}-\frac{b^{2}}{y}=0$
$\frac{a^{2} b}{x}+\frac{a b^{2}}{y}-(a+b)=0$
Let $\frac{1}{x}=u$ and $v=\frac{1}{y}$
Rewriting equations
$a^{2} u-b^{2} v=0 \ldots \ldots(1)$
$a^{2} b u+a b^{2} v-(a+b)=0 \ldots \ldots(2)$
Now, by cross multiplication method we get
$\frac{u}{\left(-(a+b)\left(-b^{2}\right)\right)-(0)}=\frac{-v}{\left(-(a+b)\left(a^{2}\right)\right)-(0)}=\frac{1}{\left(a^{3} b^{2}\right)+\left(a^{2} b^{3}\right)}$
$\frac{u}{\left(a b^{2}+b^{3}\right)}=\frac{v}{\left(a^{3}+b a^{2}\right)}=\frac{1}{\left(a^{3} b^{2}+a^{2} b^{3}\right)}$
For u consider the following
$\frac{u}{\left(a b^{2}+b^{3}\right)}=\frac{1}{\left(a^{3} b^{2}+a^{2} b^{3}\right)}$
$\frac{l l}{(a+b)}=\frac{1}{a^{2}(a+b)}$
$u=\frac{1}{a^{2}}$
For y consider
$\frac{v}{\left(a^{3}+b a^{2}\right)}=\frac{1}{\left(a^{3} b^{2}+a^{2} b^{3}\right)}$
$\frac{v}{(a+b)}=\frac{1}{b^{2}(a+b)}$
$v=\frac{1}{b^{2}}$
We know that
$\frac{1}{x}=u$ and $v=\frac{1}{y}$
Now
$\frac{1}{x}=\frac{1}{a^{2}}$ and $\frac{1}{b^{2}}=\frac{1}{y}$
$x=a^{2}$ and $y=b^{2}$
Hence we get the value of $x=\mathrm{a}^{2}$ and $\mathrm{y}=b^{2}$