Solve each of the following systems of equations by the method of cross-multiplication :
$5 a x+6 b y=28$
$3 a x+4 b y=18$
GIVEN:
$5 a x+6 b y=28$
$3 a x+4 b y=18$
To find: The solution of the systems of equation by the method of cross-multiplication:
Here we have the pair of simultaneous equation
$5 a x+6 b y-28=0$
$3 a x+4 b y-18=0$
By cross multiplication method we get
$\frac{x}{(-18 \times 6 b)-(4 b \times(-28))}=\frac{-y}{(5 a) \times(-18)-((3 a) \times-(28))}=\frac{1}{20 a b-18 a b}$
$\frac{x}{(-108 b)-(-112 b)}=\frac{-y}{(-90 a)-(-84 a)}=\frac{1}{2 a b}$
$\frac{x}{4 b}=\frac{-y}{-6 a}=\frac{1}{2 a b}$
$\frac{x}{4 b}=\frac{y}{6 a}=\frac{1}{2 a b}$
Consider the following to calculateĀ x
$\frac{x}{4 b}=\frac{1}{2 a b}$
$x=\frac{4 b}{2 a b}$
$\Rightarrow x=\frac{2}{a}$
AndĀ
$\frac{y}{6 a}=\frac{1}{2 a b}$
$\frac{y}{6 a}=\frac{1}{2 a b}$
$\Rightarrow y=\frac{6 a}{2 a b}=\frac{3}{b}$
Hence we get the value of $x=\frac{2}{a}$ and $\mathrm{y}=\frac{3}{b}$