Solve each of the following systems of equations by the method of cross-multiplication :
$\frac{x}{a}+\frac{y}{b}=2$
$a x-b y=a^{2}-b^{2}$
GIVEN:
$\frac{x}{a}+\frac{y}{b}=2$
$a x-b y=a^{2}-b^{2}$
To find: The solution of the systems of equation by the method of cross-multiplication:
Here we have the pair of simultaneous equation
$\frac{x}{a}+\frac{y}{b}-2=0$
$a x-b y-\left(a^{2}-b^{2}\right)=0$
By cross multiplication method we get
$\frac{x}{\left(\left(\frac{1}{b} \times-\left(a^{2}-b^{2}\right)\right)\right)-((-2) \times(-b))}=\frac{-y}{\left(\left(\frac{1}{a} \times-\left(a^{2}-b^{2}\right)\right)\right)-(-2 \times(a))}=\frac{1}{\left(\frac{1}{a} \times(-b)\right)-\left(\frac{1}{b} \times(a)\right)}$
$\frac{x}{\frac{-\left(a^{2}-b^{2}\right)}{b}-2 b}=\frac{-y}{\left(\frac{-\left(a^{2}-b^{2}\right)}{a}\right)+2 a}=\frac{1}{\left(\frac{(-b)}{a}\right)-\left(\frac{(a)}{b}\right)}$
$\frac{x}{\frac{-\left(a^{2}-b^{2}\right)-2 b^{2}}{b}}=\frac{-y}{\left(\frac{-\left(a^{2}-b^{2}\right)+2 a^{2}}{a}\right)}=\frac{1}{\left(\frac{\left(-b^{2}\right)-\left(a^{2}\right)}{a b}\right)}$
$\frac{x}{\frac{-\left(a^{2}-b^{2}\right)-2 b^{2}}{b}}=\frac{-y}{\left(\frac{-\left(a^{2}-b^{2}\right)+2 a^{2}}{a}\right)}=\frac{1}{\left(\frac{-\left(a^{2}+b^{2}\right)}{a b}\right)}$
So for x we have
$\frac{x}{\frac{-\left(a^{2}-b^{2}\right)-2 b^{2}}{b}}=\frac{1}{\left(\frac{-\left(a^{2}+b^{2}\right)}{a b}\right)}$
$\frac{x}{\frac{-\left(a^{2}+b^{2}\right)}{b}}=\frac{1}{\left(\frac{-\left(a^{2}+b^{2}\right)}{a b}\right)}$
$x=a$
And
$\frac{-y}{\left(\frac{-\left(a^{2}-b^{2}\right)+2 a^{2}}{a}\right)}=\frac{1}{\left(\frac{-\left(a^{2}+b^{2}\right)}{a b}\right)}$
$\frac{\frac{-y}{\left(a^{2}+b^{2}\right)}}{a}=\frac{1}{\left(\frac{-\left(a^{2}+b^{2}\right)}{a b}\right)}$
$y=b$
Hence we get the value of $x=a$ and $y=b$