Solve each of the following systems of equations by the method of cross-multiplication :
$\frac{57}{x+y}+\frac{6}{x-y}=5$
$\frac{38}{x+y}+\frac{21}{x-y}=9$
GIVEN:
$\frac{57}{x+y}+\frac{6}{x-y}=5$
$\frac{38}{x+y}+\frac{21}{x-y}=9$
To find: The solution of the systems of equation by the method of cross-multiplication:
Here we have the pair of simultaneous equation
$\frac{57}{x+y}+\frac{6}{x-y}-5=0$
$\frac{38}{x+y}+\frac{21}{x-y}-9=0$
let $\frac{1}{x+y}=u$ and $\frac{1}{x-y}=v$
Now rewriting the given equation as
$57 u+6 v-5=0$..(1)
$38 u+21 v-9=0$..$.(2)$
By cross multiplication method we get
$\frac{u}{(-9 \times 6)-(-5 \times 21)}=\frac{-v}{(-9 \times 57)-(-5 \times 38)}=\frac{1}{(21 \times 57)-(38 \times 6)}$
$\frac{u}{(-54)-(-105)}=\frac{-v}{(-513)-(-190)}=\frac{1}{(1197)-(228)}$
$\frac{u}{51}=\frac{-v}{-323}=\frac{1}{969}$
$\frac{u}{51}=\frac{v}{323}=\frac{1}{969}$
Consider the following for u
$\frac{u}{51}=\frac{1}{969}$
$\mathrm{v}=\frac{1}{3}$
Consider the following for v
$\frac{\mathrm{V}}{323}=\frac{1}{969}$
$v=\frac{1}{3}$
We know that
$\frac{1}{x+y}=u$ and $\frac{1}{x-y}=v$
$\frac{1}{x+y}=\frac{1}{19}$
$x+y=19$ ..(3)
$\frac{1}{x-y}=\frac{1}{3}$
$x-y=3$ ...(4)
Now adding eq. (3) and (4) we get $x=11$
And after substituting the value of $\mathrm{x}$ in eq. (4) we get $y=8$
Hence we get the value of $x=11$ and $y=8$