Solve each of the following systems of equations by the method of cross-multiplication :
$\frac{5}{x+y}-\frac{2}{x-y}=-1$
$\frac{15}{x+y}+\frac{7}{x-y} 10$
where $x \neq 0$ and $y \neq 0$
GIVEN:
$\frac{5}{x+y}-\frac{2}{x-y}=-1$
$\frac{15}{x+y}+\frac{7}{x-y}=10$
To find: The solution of the systems of equation by the method of cross-multiplication:
Here we have the pair of simultaneous equation
Rewriting the equation again
$\frac{5}{x+y}-\frac{2}{x-y}+1=0$
$\frac{15}{x+y}+\frac{7}{x-y}-10=0$
Taking $u=\frac{1}{x+y}$ and $v=\frac{1}{x-y}$
$5 u-2 v+1=0$...(1)
$15 u+7 v-10=0$...$.(2)$
By cross multiplication method we get
$\frac{u}{(20)-(7)}=\frac{-v}{(-50)-(15)}=\frac{1}{(35)-(-30)}$
$\Rightarrow \frac{u}{13}=\frac{-v}{-65}=\frac{1}{65}$
$\Rightarrow \frac{u}{13}=\frac{v}{65}=\frac{1}{65}$
$\Rightarrow \frac{u}{13}=\frac{1}{65}$
$\Rightarrow u=\frac{1}{5}$
And
$\frac{v}{65}=\frac{1}{65}$
$v=1$
We know that
$u=\frac{1}{x+y}$ and $v=\frac{1}{x-y}$
$\Rightarrow \frac{1}{5}=\frac{1}{x+y}$
$\Rightarrow x+y=5 \quad \ldots \ldots . .(3)$
and
$1=\frac{1}{x-y}$
$\Rightarrow x-y=1$ $...(4)$
Adding equation (3) and (4)
$2 x=6$
$x=3$
Substituting value of x in equation (3) we get
$\begin{aligned} y &=5-3 \\ &=2 \end{aligned}$
$=2$
Hence we get the value of $x=3$ and $y=2$