Solve each of the following system of homogeneous linear equations.
$x+y-2 z=0$
$2 x+y-3 z=0$
$5 x+4 y-9 z=0$
Given: $x+y-2 z=0$
$2 x+y-3 z=0$
$5 x+4 y-9 z=0$
$D=\left|\begin{array}{rrr}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right|$
$=1(-9+12)-1(-18+15)-2(8-5)$
$=0$
So, the system has infinitely many solutions. Putting $z=k$ in the first two equations, we get
$x+y=2 k$
$2 x+y=3 k$
Using Cramer's rule, we get
$x=\frac{D_{1}}{D}=\frac{\left|\begin{array}{ll}2 k & 1 \\ 3 k & 1\end{array}\right|}{\left|\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right|}=\frac{-k}{-1}=k$
$y=\frac{D_{2}}{D}=\frac{\left|\begin{array}{cc}1 & 2 k \\ 2 & 3 k\end{array}\right|}{\left|\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right|}=\frac{-k}{-1}=k$
$z=k$
Clearly, these values satisfy the third equation. Thus,
$x=y=z=k \quad[k \in R]$