Solve each of the following system of equations in R.
15. $\frac{2 x-3}{4}-2 \geq \frac{4 x}{3}-6,2(2 x+3)<6(x-2)+10$
$\frac{2 x-3}{4}-2 \geq \frac{4 x}{3}-6$
$\Rightarrow \frac{2 x-3}{4}-\frac{4 x}{3} \geq-6+2$
$\Rightarrow \frac{3(2 x-3)-16 x}{12} \geq-4$
$\Rightarrow 6 x-9-16 x \geq-48$
$\Rightarrow-10 x \geq-39$
$\Rightarrow 10 x \leq 39 \quad$ [Multiplying both sides by $-1]$
$\Rightarrow x \leq \frac{39}{10}$
$\Rightarrow x \in\left(-\infty, \frac{39}{10}\right] \quad \ldots(\mathrm{i})$
Also, $\quad 2(2 x+3)<6(x-2)+10$
$\Rightarrow 4 x+6<6 x-12+10$
$\Rightarrow 4 x+6<6 x-2$
$\Rightarrow 6 x-2>4 x+6$
$\Rightarrow 6 x-4 x>6+2$
$\Rightarrow 2 x>8$
$\Rightarrow x>4$
$\Rightarrow x \in(4, \infty) \quad \ldots$ (ii)
Hence, the solution of the given set of inequalities is the intersection of (i) and (ii),
$\left(-\infty, \frac{39}{10}\right] \cap(4, \infty)=\emptyset$
which is an empty set.
Thus, there is no solution of the given set of inequations.