Question:
Solve each of the following quadratic equations:
$2 x^{2}-x+\frac{1}{8}=0$
Solution:
We write, $-x=-\frac{x}{2}-\frac{x}{2}$ as $2 x^{2} \times \frac{1}{8}=\frac{x^{2}}{4}=\left(-\frac{x}{2}\right) \times\left(-\frac{x}{2}\right)$
$\therefore 2 x^{2}-x+\frac{1}{8}=0$
$\Rightarrow 2 x^{2}-\frac{x}{2}-\frac{x}{2}+\frac{1}{8}=0$
$\Rightarrow 2 x\left(x-\frac{1}{4}\right)-\frac{1}{2}\left(x-\frac{1}{4}\right)=0$
$\Rightarrow\left(x-\frac{1}{4}\right)\left(2 x-\frac{1}{2}\right)=0$
$\Rightarrow x-\frac{1}{4}=0$ or $2 x-\frac{1}{2}=0$
$\Rightarrow x=\frac{1}{4}$ or $x=\frac{1}{4}$
Hence, $\frac{1}{4}$ is the repeated root of the given equation.