Solve each of the following in equations and represent the solution set on the number line.
$\frac{2 x-1}{12}-\frac{x-1}{3}<\frac{3 x+1}{4}$ where $x \in \mathbf{R}$.
Given:
$\frac{2 x-1}{12}-\frac{x-1}{3}<\frac{3 x+1}{4}$, where $x \in R$
Multiply by 12 on both sides in the above equation
$12\left(\frac{2 x-1}{12}\right)-12\left(\frac{x-1}{3}\right)<12\left(\frac{3 x+1}{4}\right)$
$(2 x-1)-4(x-1)<3(3 x+1)$
$2 x-1-4 x+4<9 x+3$
$3-2 x<9 x+3$
Now, subtracting 3 on both sides in the above equation
$3-2 x-3<9 x+3-3$
$-2 x<9 x$
Now, subtracting 9x from both the sides in the above equation
$-2 x-9 x<9 x-9 x$
$-11 x<0$
Multiplying -1 on both the sides in above equation
$(-11 x)(-1)<(0)(-1)$
$11 x>0$
Dividing both sides by 11 in above equation
$\frac{11 x}{11}>\frac{0}{11}$
Therefore,
$x>0$