Solve each of the following in equations and represent the solution set on the number line.
$|x+a|+|x|>3, x \in R$
Given:
$|x+a|+|x|>3, x \in R$
$|x+a|=-(x+a)$ or $(x+a)$
$|x|=-x$ or $x$
When $|x+a|=-(x+a)$ and $|x|=-x$
Then,
$|x+a|+|x|>3 \rightarrow-(x+a)+(-x)>3$
$-x-a-x>3$
$-2 x-a>3$
Adding a on both the sides in above equation
$-2 x-a+a>3+a$
$-2 x>3+a$
Dividing both the sides by 2 in above equation
$\frac{-2 x}{2}>\frac{3+a}{2}$
$-x>\frac{3+a}{2}$
Multiplying both the sides by -1 in the above equation
$-x(-1)>\left(\frac{3+a}{2}\right)(-1)$
$x<-\left(\frac{3+a}{2}\right)$
Now when, $|x+a|=-(x+a)$ and $|x|=x$
Then,
$|x+a|+|x|>3 \rightarrow-(x+a)+x>3$
$-x-a+x>3$
$-a>3$
In this case no solution for x
Now when, $|x+a|=(x+a)$ and $|x|=-x$
Then,
$|x+a|+|x|>3 \rightarrow(x+a)+(-x)>3$
$x+a-x>3$
a > 3
In this case no solution for x.
Now when,
$|x+a|=(x+a)$ and $|x|=x$
Then,
$|x+a|+|x|>3 \rightarrow(x+a)+(x)>3$
$x+a+x>3$
$2 x+a>3$
Subtracting a from both the sides in above equation
$2 x+a-a>3-a$
$2 x>3-a$
Dividing both the sides by 2 in above equation
$\frac{2 x}{2}>\frac{3-a}{2}$
$x>\frac{3-a}{2}$
Therefore,
$x<-\left(\frac{3+a}{2}\right)$ or $x>\left(\frac{3-a}{2}\right)$