Solve each of the following in equations and represent the solution set on the number line.
$\frac{|x-3|-x}{x}<2, x \in \mathbf{R} .$
Given:
$\frac{|x-3|-x}{x}<2, x \in R$
Intervals of $|x-3|$
$|x-3|=-(x-3)$ or $(x-3)$
When $|x-3|=x-3$
$x-3 \geq 0$
Therefore, $x \geq 3$
When $|x-3|=-(x-3)$
$(x-3)<0$
Therefore, $x<3$
Intervals: $x \geq 3$ or $x<3$
Domain of $\frac{|x-3|-x}{x}<2$ :
$\frac{|x-3|-x}{x}$ is not defined for $x=0$
Therefore, x > 0 or x < 0
Now, combining intervals and domain:
x < 0 or 0 < x < 3 or x ≥ 3
For x = 0
$\frac{|x-3|-x}{x}<2 \underset{\rightarrow}{\frac{-(x-3)-x}{x}<2}$
Now, subtracting 2 from both the sides
$\frac{-(x-3)-x}{x}-2<2-2$
$\frac{-x+3-x-2 x}{x}<2-2$
$\frac{3-4 x}{x}<0$
Signs of $3-4 x:$
$3-4 x=0 \rightarrow x=\frac{3}{4}$
(Subtracting 3 from both the sides and then dividing both sides by -1)
$3-4 x>0 \rightarrow x<\frac{3}{4}$
(Subtracting 3 from both the sides and then multiplying both sides by -1)
$3-4 x<0 \rightarrow x>\frac{3}{4}$
(Subtracting 3 from both the sides and then multiplying both sides by $-1$ )
Signs of x:
$x=0$
$x<0$
$x>0$
Intervals satisfying the required condition: < 0
$x<0$ or $x>\frac{3}{4}$
Combining the intervals:
$x<0$ or $x>\frac{3}{4}$ and $x<0$
Merging the overlapping intervals:
x < 0
Similarly, for $0 $x<0$ or $x>\frac{3}{4}$ and $0 Merging the overlapping intervals: $\frac{3}{4} For, $x \geq 3$ $\frac{|x-3|-x}{x}<2 \underset{\rightarrow}{\frac{(x-3)-x}{x}<2}$ Now, subtracting 2 from both the sides $\frac{(x-3)-x}{x}-2<2-2$ $\frac{x-3-x-2 x}{x}<2-2$ $\frac{-3-2 x}{x}<0$ Signs of $-3-2 x$ : $-3-2 x=0 \rightarrow x=\frac{-3}{2}$ (Adding 3 to both the sides and then dividing both sides by -2) $-3-2 x>0 \rightarrow x<\frac{-3}{2}$ (Adding 3 to both the sides and then multiplying both sides by -1) $-3-2 x<0 \rightarrow x>\frac{-3}{2}$ (Adding 3 to both the sides and then multiplying both sides by -1) Signs of x: $x=0$ $x<0$ $x>0$ Intervals satisfying the required condition: < 0 $\mathrm{X}<\frac{-3}{2}$ or $\mathrm{x}>0$ Combining the intervals: $x<\frac{-3}{2}$ or $x>0$ and $x \geq 3$ Merging the overlapping intervals x ≥ 3 Combining all the intervals: $x<0$ or $\frac{3}{4} Merging overlapping intervals: $x<0$ and $x>\frac{3}{4}$ Therefore $x \in(-\infty, 0) \cup\left(\frac{3}{4}, \infty\right)$