Solve each of the following in equations and represent the solution set on the number line.
$|4 x-5| \leq \frac{1}{3}, x \in R$
Given:
$|4 x-5| \leq \frac{1}{3}, x \in R$
$4 x-5 \leq \frac{1}{3}$ or $4 x-5 \geq-\frac{1}{3}$
$4 x-5 \leq \frac{1}{3}$
Adding 5 to both the sides in the above equation
$4 x-5+5 \leq \frac{1}{3}+5$
$4 x \leq \frac{1+15}{3}$
$4 x \leq \frac{16}{3}$
Now, dividing both the sides by 4 in the above equation
$\frac{4 x}{4} \leq \frac{16}{3 \cdot(4)}$
$x \leq \frac{4}{3}$
Now
$4 x-5 \geq-\frac{1}{3}$
Adding 5 to both the sides in the above equation
$4 x-5+5 \geq-\frac{1}{3}+5$
$4 x \geq \frac{-1+15}{3}$
$4 x \geq \frac{14}{3}$
Now, dividing both the sides by 4 in the above equation
$\frac{4 x}{4} \geq \frac{14}{3 .(4)}$
$x \geq \frac{7}{6}$
Therefore
$x \in\left[\frac{7}{6}, \frac{4}{3}\right]$