Question:
Solve each of the following Cryptarithms:
Solution:
Two possible values of $\mathrm{A}$ are :
(i) If $7+\mathrm{B} \leq 9$
$\therefore 3+\mathrm{A}=9$
$\Rightarrow \mathrm{A}=6$
But if $\mathrm{A}=6,7+\mathrm{B}$ must be larger than 9 . Hence, it is impossible.
(ii) If $7+B \geq 9$
$\therefore 1+3+\mathrm{A}=9$
$\Rightarrow \mathrm{A}=5$
If $\mathrm{A}=5$ and $7+\mathrm{B}=5, \mathrm{~B}$ must be 8
$\therefore \mathrm{A}=5, \mathrm{~B}=8$