Question:
Solve $\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x,(x>0)$
Solution:
$\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x$
$\Rightarrow \tan ^{-1} 1-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x \quad\left[\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}\right]$
$\Rightarrow \frac{\pi}{4}=\frac{3}{2} \tan ^{-1} x$
$\Rightarrow \tan ^{-1} x=\frac{\pi}{6}$
$\Rightarrow x=\tan \frac{\pi}{6}$
$\therefore x=\frac{1}{\sqrt{3}}$