Question:
Solve $\frac{3}{x-2}<1$, when $x \in R$
Solution:
$\frac{3}{x-2}<1$
$\Rightarrow \frac{3}{x-2}-1<0$
$\Rightarrow \frac{3-x+2}{x-2}<0$
$\Rightarrow \frac{5-x}{x-2}<0$
Observe that $\frac{5-x}{x-2}$ is zero at $\mathrm{x}=5$ and not defined at $\mathrm{x}=2$
Hence plotting these two points on number line
Now for $x>5, \frac{5-x}{x-2}$ is negative
For every root and not defined value of $\frac{5-x}{x-2}$ the sign will change
We want the negative part hence x < 2 and x > 5
x < 2 means x is from negative infinity to 2 and x > 5 means x is from 5 to infinity
Hence $x \in(-\infty, 2) \cup(5, \infty)$
Hence solution of $\frac{3}{x-2}<1$ is $x \in(-\infty, 2) \cup(5, \infty)$