sin x + i cos 2x and cos x – i sin 2x are conjugate to each other for

Question:

sin x + i cos 2x and cos x – i sin 2x are conjugate to each other for

(a) x = nπ

(b) $x=\left(n+\frac{1}{2}\right) \frac{\pi}{2}$

(c) x = 0

(d) No value of x

Solution:

Given sin x + i cos 2x and cos x – i sin 2x are conjugate to each other

i.e sin x + cos 2x = cos x – i sin 2x

i.e sin x – cos 2x = cos x – i sin 2x

on comparing real and imaginary part,

sin x = cos and cos 2x = sin 2x

i.e. sin x = cos x and 2cos2 x – 1 = 2 sin x cos x

i.e 2cos2 x – 1 = 2 cos x cos         (∴ sin x = cos x)

i.e 2cos2 x – 1 = 2cos2 x

i.e – 1 = 0

which is a false statement.

Hence no value of x exist

Therefore, the correct answer is option D.

Leave a comment