sin (45° + θ) – cos (45° – θ) = ?

Question:

sin (45° + θ) – cos (45° – θ) = ?
(a) 0
(b) 1
(c) 2
(d) –2

 

Solution:

$\sin \left(45^{\circ}+\theta\right)-\cos \left(45^{\circ}-\theta\right)$

$=\cos \left(90^{\circ}-\left(45^{\circ}+\theta\right)\right)-\cos \left(45^{\circ}-\theta\right) \quad\left(\because \sin \theta=\cos \left(90^{\circ}-\theta\right)\right)$

$=\cos \left(90^{\circ}-45^{\circ}-\theta\right)-\cos \left(45^{\circ}-\theta\right)$

$=\cos \left(45^{\circ}-\theta\right)-\cos \left(45^{\circ}-\theta\right)$

$=0$

Hence, the correct option is (a).

 

Leave a comment