$sin ^{2} rac{pi}{6}+cos ^{2} rac{pi}{3}- an ^{2} rac{pi}{4}=- rac{1}{2}$

Question:

$\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}$

Solution:

L.H.S. $=\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}$

$=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}-(1)^{2}$

$=\frac{1}{4}+\frac{1}{4}-1=-\frac{1}{2}$

$=$ R.H.S.

Leave a comment